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 Abstract – FACTS devices employ high speed, and high 

power semi-conductor technologies to help better regulate the 

power systems. To improve the damping of oscillations in power 

systems, supplementary control laws can be applied to the 

existing FACTS devices. These supplementary actions are 

referred to as power oscillation damping (POD) control. In this 

paper, the POD controllers are designed using the frequency 

response and residue methods. The small signal stability of power 

systems as affected by TCSC devices and PODs are evaluated 

and compared with the base power system where no FACTS 

devices are included. Both modal analysis and time domain 

simulations are presented to show the impact of the designed 

PODs on damping the electromechanical oscillations in power 

systems. Several examples are given to show the impact of POD 

input signals on the design and system response. The results show 

the capability of well designed FACTS-POD in improving the 

stability of power systems. In addition, the design is successfully 

implemented using the considered methods. 

 
 Index Terms – FACTS; modal analysis; electromechanical 

oscillations; POD; time domain simulation. 

 

I.  INTRODUCTION 

 Power system stability has been recognized as an 

important problem for secure system operation since the 1920s 

[1]. The importance of this phenomenon has emerged due to 

the fact that many major blackouts in recent years caused by 

power system instability. As power systems have evolved 

through continuing growth in the interconnections and the 

increased operation in highly stressed conditions, different 

forms of power system instability have emerged [18]. 

 The benefits of Flexible AC Transmission Systems 

(FACTS) devices are widely recognized by power system 

practitioners and the T&D community for enhancing both 

steady-state and dynamic performances of power systems [2-

4]. The advent of these devices has required additional efforts 

in modeling and analysis, requiring engineers to have a wider 

background for a deeper understanding of power system's 

dynamic behavior. 

 The aim of this paper is to present procedures for 

designing power oscillation dampers (PODs) for FACTS 

devices in order to contextualize some important concepts of 

control theory into power system stability. A variety of design 

methods can be used for tuning POD parameters. The most 

common techniques are based on frequency response [5], pole 

placement [6], eigenvalues sensitivity [6, 7] and residue 

method [8].  

 Due to their popularity, POD designs are presented in this 

paper using the frequency domain and residue methods for 

control design. The Thyristor Controlled Series Compensator 

(TCSC) that belong to the family of FACTS devices is 

considered in this paper. TCSC are mainly used for power 

flow control and as active series compensators for AC power 

transmission lines. The small signal stability of power systems 

as affected by TCSC devices and PODs are evaluated and 

compared with the base power system where no FACTS 

devices are included. Both modal analysis and time domain 

simulation (TDS) are presented to show the impact of the 

designed PODs on damping the electromechanical oscillations 

in power systems. Several examples are given to show the 

impact of POD input signals on the design and system 

response.  

II.  THE STUDY SYSTEM, MODELING, AND MODAL ANALYSIS 

A. The Study System 

 The study system is shown in Fig.1. The system data are 

available at [9]. This system will be studied and analyzed with 

the aid of the Power System Analysis Toolbox (PSAT) version 

2.1.7, the Simulink  and the control system toolbox of Matlab 

2012a [10-12]. The PSAT model of the system is shown in 

Fig. 2. Based on [9], the study system consists of four 555 

MVA, 24 kV, 60 HZ units supplying power to an infinite bus 

through two transmission circuits as shown in Fig.1. The four 

generators are represented by one equivalent generator that is 

represented by the second order dynamic model [9, 10]. On 

2220 MVA and 24 kV base, the transient reactance of the 

equivalent generator (  
 ) is 0.3 p.u, its inertia constant (H) is 

3.5 sec, and its damping coefficient (D) is 10 in p.u torque/p.u 

speed. The initial conditions of the system in p.u on the 2220 

MVA, 24 KV base are             ,              , P 

= 0.9, and Q =  0.3 (overexcited). 

 

 
Fig. 1 The study system with the p.u network reactances are shown on 2220 

MVA base 

 
Fig. 2 The study system model in PSAT 

 

 



16th International Middle- East Power Systems Conference -MEPCON'2014 
 Ain Shams University, Cairo, Egypt, December 23 - 25, 2014  

 

 

 

 

B. Power system modelling and modal analysis 

 The power systems are dynamic systems that can be 

represented by differential algebraic equations in combination 

with non-linear algebraic equations. Hence, a power system 

can be dynamically described by a set of   first order 

nonlinear ordinary differential equations that are to be solved 

simultaneously. In vector-matrix notation, these equations are 

expressed as follows [9,19]: 

 

 ̇   (   )                                                                               ( ) 
   (   )                                                                               ( ) 

 

where:    ,         - ,   ,         - ,   
  ,         -

 ,   ,         - ,   ,         -
   

 

  is the order of the system,   is the number of inputs, and   

is the number of outputs. The column vector   is called the 

state vector and its entries are the state variables. The vector   

is the vector of inputs to the system, which are external signals 

that have an impact on the performance of the system. The 

output variables ( ) are those that can be observed in the 

system. The column vector y is the vector of system output 

variables, referred as output vector and   is the vector of 

nonlinear functions defining the output variables in terms of 

state and input variables. 

 The design of POD controllers is based on linear system 

techniques. After solving the power flow problem, a modal 

analysis is carried out by computing the eigenvalues and the 

participation factors of the state matrix of the system. The 

dynamic system is put into state space form as a combination 

of coupled first order, linearized differential equations that 

take the form, 

                                                            

  ̇                                                                           ( ) 
 

                                                                             ( ) 

           

where   represents a small deviation,   is the state matrix of 

size    , B is the control matrix of size    ,   is the 

output matrix of size    , and   is the feed forward matrix 

of size       The values of the matrix D define the 

proportion of input which appears directly in the output. 

 The eigenvalues   of the state matrix   can be determined 

by solving     ,    -       Let             be the i
th
 

eigenvalue of the state matrix A; the real part gives the 

damping, and the imaginary part gives the frequency of 

oscillation. The relative damping ratio is then given by: 

 

      √  
    

                                                             ( )⁄  

 

If the state space matrix A has n distinct eigenvalues, then the 

diagonal matrix of the eigenvalues (Λ), the right eigenvectors 

( ), and the left eigenvectors (Ψ) are related by the following 

equations. 

 

                                                                                     ( )   

                                                                                        ( )                
                                                                                         ( )              

 

 In order to modify a mode of oscillation by a feedback 

controller, the chosen input must excite the mode and it must 

also be visible in the chosen output [8]. The measures of those 

two properties are the controllability and observability, 

respectively. The modal controllability ( ́)  and modal 

observability ( ́) matrices are respectively defined by, 

 

 ́                                                                                      ( )          

 ́                                                                                      (  ) 

 

The mode is uncontrollable if the corresponding row of the 

matrix  ́  is zero. The mode is unobservable if the 

corresponding column of the matrix  ́  is zero. If a mode is 

neither controllable nor observable, the feedback between the 

output and the input will have no effect on the mode. 

 

C. TCSC Model 

 A TCSC as shown in Fig. 3(a) can be defined as 

capacitive reactance compensator which consists of a series 

fixed capacitor (FC) bank shunted by a thyristor-controlled 

reactor (TCR) in order to provide a smoothly variable series 

capacitive reactance. When placed in series with a 

transmission line as shown in Fig. 3(b), the TCSC can change 

the power flow on the line as a result of the changes made by 

the TCSC on the line reactance; the following algebraic 

equations approximately govern the power flow on a line 

connecting buses k and m (shown in Fig. 3(b)) when the line 

resistance is neglected. 

 

         (         )    (     )            (  ) 

 

      
 (         )       (   

      )     (     )                     (  ) 

 

      
 (         )       (   

      )     (     )                     (  ) 

 

 
(a) 

 
(b)  

Fig.3 TCSC structure and control modes: (a) Basic structure, (b) A line with 
TCSC 
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 The TCSC can be controlled to provide either a constant 

power control or a constant admittance control. The constant 

power control scheme is shown in Fig. 4(a). In this case, the 

state variables of the TCSC are       and      (   ⁄ ). 

Therefore, the state space model of the constant power 

regulator takes the form, 

 

 ̇  (             )   ⁄                                           (  ) 

 

 ̇                                                                                    (  ) 

 

where:            ,            ,  (  )  

  {   (    )}⁄ , and         ⁄   

 

 

The constant admittance regulator for TCSC takes the form 

shown in Fig. 4(b). In this case, one state variable (     ) 

represents the TCSC and the state space model takes the form, 

 

 ̇  (               )   ⁄                                         (  ) 
 

 
(a) 

 
(b) 

Fig. 4 Control modes of TCSC: (a) Constant power regulator; (b) Constant 

admittance regulator 

 The constant admittance operation of the TCSC will be 

considered for compensating differences between the 

reactances of two parallel transmission lines. The TCSC will 

be placed on line 2 shown in Fig. 2 and will be used to 

compensate the difference between the reactances of line 1 

and line 2 of the study system shown in Fig. 1 and 2. The 

study system with the TCSC placed on line 2 is shown in Fig. 

5. In this case, series compensation ratio is 0.462. The input 

variables to the PSAT block for modeling the TCSC are: 

         sec,             p.u,              p.u. 

            

 
              Fig.5 The study system after connecting the TCSC  

III.  POD DESIGN 

 The POD controller is designed using two methods. These 

are the frequency response method and the residue method. 

The main design objective is to achieve a predefined damping 

level of the electromechanical oscillations. The general control 

diagram of the power system controlled by the POD is 

depicted in Fig. 6. As shown in Fig. 7, The structure of the 

POD controller is similar to the classical power system 

stabilizer (PSS). The controller consists of a stabilizer gain, a 

washout filter, and phase compensator blocks. The washout 

signal ensures that the POD output is zero in steady-state. The 

output signal vPOD is subjected to an anti-windup limiter and 

its dynamics are dependent on a small time constant Tr (in this 

paper Tr = 0.01 s). The gain Kw determines the amount of 

damping introduced by the POD and the phase compensator 

blocks provide the appropriate phase lead-lag compensation of 

the input signal. 

 

 
Fig.6 General feedback control system 

 
Fig.7: Scheme of the POD controller 

 

A.  Frequency Response Method 

 The POD controller is designed using the frequency 

response method through Nyquist plots of a given Open Loop 

Transfer Function (OLTF) [5].The Nyquist criterion allows to 

assess the closed-loop stability of a feedback system by 

checking the OLTF poles and plotting its frequency response 

[14,15]. Closed-loop stability of the open-loop unstable 

system is obtained by ensuring an anti-clockwise encirclement 

of the (-1) point of the complex plane in the Nyquist plot of 

the OLTF after applying feedback compensation [16, 17].  

 The main steps of the procedure for POD design using the 

frequency response method can be described by a flowchart as 

shown in Fig.8. As shown in Fig. 8, the main design steps in 

the POD design using the frequency response method can be 

summarized as follows [17]: 

1) Eigenvalue analysis: In this design, the critical modes of 

the uncompensated system (i.e. without the POD) are 

identified based on eigenvalues and the participation 

factors of the state matrix. The participation factors (   ) 

of the state variables to each eigenvalue are computed by 

using right and left eigenvectors. If   and   represent 

respectively the right and the left eigenvector matrices 
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(Eqs. (6) to (8)), then the participation factor      of 

the     state variable to the     eigenvalue can be defined 

as [13]:  

 

           (  
   )⁄                                        (  )          

 

2) State-space form: In this step,  all output and input 

matrices (  ,  ,  , and  ) are determined. The 

observability and controllability as defined by Eqs. (9) 

and (10) can be determined based on these matrices. 

3)  Nyquist analysis: In this step, the value washout filter 

time constant is randomly selected between 1 and 20 Sec 

then the Nuquist plot of the uncompensated loop 

including the washout filter is constructed. The required 

phase compensation  is then determined from the 

constructed Nyquist plot. The objective is to obtain a 

good phase margin based on the critical frequency   . 

4) Compensator blocks tuning: Based on the value of   that 

is determined in the previous step, the parameters of the 

phase compensator blocks are determined in this step 

using [17], 

   *      (   )⁄ + *      (   ⁄ )+⁄               (  ) 

      √                                                                    (  )⁄  

                                                                                  (  ) 

 

where    is the number of the lead-lag blocks and    is 

the frequency of the critical mode to be damped. The 

value of     is usually one or two;  Fig. 7 shows a POD 

with two lead-lag blocks (i.e.    = 2) which is 

considered in this paper. In this layout, T3 and T4 are 

equal to T1 and T2. 

5) Damping ratio adjustment: In this step, the root locus plot 

of the compensated system is used to determine the value 

of Kw that provide an acceptable damping ratio (i.e.  ≥ 

10%). The POD design is completed by completing this 

step; however, further adjustment of the design can 

achieved by fine tunning the POD parameters as 

described in the next step. 

6) Fine tuning of the POD design: The POD parameters 

have to be specified and chosen to fulfill specific 

performance parameters. The damping is one of the most 

important performance parameters; however, the 

performance is also goverened by many parameters such 

as the maximum rise time (  ), the maximum overshoot 

(  ), the desired damping ratio ( ), and the settling time 

(  ) [17]. The fulfillment of these performance parameters 

can be achieved by fine tuning of the POD parameters 

keeping in mind that the damping ratio is the main 

specification in power system control design and, for 

large power systems, 10% of damping is considered 

sufficient for POD controllers [9, 17]. 
 

 
Fig. 8: Flowchart describing the frequency response method 

 

B) Residue Method: 

 The residue method for POD design will be described 

based on the general feedback control system shown in Fig. 9. 

The transfer function of the system is G(s) and the feedback 

control is H(s). The open loop transfer function of a SISO  

system is [8]:        
     

 ( )  
  ( )

  ( )
  (    )                                         (  ) 

 

 ( ) can be expanded in partial fractions of the Laplace 

transform in terms of the   matrix , the   matrix, the right 

eigenvectors, and the left eigenvectors as: 

                          

 ( )  ∑
  (   ) (   ) 

    

 

   

 ∑
  

(    )
                (  )

 

   

 

 

Each term in the nominator of the summation is a scalar called 

residue. The residue for a particular mode gives the sensitivity 

of the eigenvalue of that mode to the feedback between the 

output   and the input   of the SISO system. the residue is the 

product of the mode’s observability and controllability. 

 When applying the feedback control, eigenvalues of the 

initial system  ( )  are changed. It can be proved  [8] that 

when the feedback control is applied, movement of an 

eigenvalue is calculated by: 
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Fig.9 Closed-loop system with POD control. 

  

  

       (  )                                                                    (  ) 

 

It can be observed from (23) that the shift of the eigenvalue 

caused by a feedback controller is proportional to the 

magnitude of the residue. For improving the damping of the 

system, the change of eigenvalue must be directed towards the 

left half side of the complex plane. This is can be achieved by 

the use of the FACTS-POD controller. The compensation 

phase angle       required to move an eigenvalue to the left 

in parallel to the real axis is illustrated in Fig. 10. This phase 

shift can be implemented using the lead-lag function of the 

POD represented by Fig. 7 and equation (24). The parameters 

of the lead-lag compensator are determined using, 

 

 
Fig.10 Shift of eigenvalues with the POD controller.  
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     ( )                (  ) 

              (  )                                                   (  ) 

   {      (       )⁄ } {      (       )⁄ }⁄    (  ) 
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where:    (  ) is the phase angle of the residue   ,    is the 

frequency of the mode of oscillation in rad/sec,    is the 

number if compensation stages (in this paper,       ). 

 

 The controller gain    is computed as a function of the 

desired eigenvalue location        according to Eq. 24. 

 

   |
         

    (  )
|                                                                (  ) 

 

The flowchart summarizing the previous design procedures is 

shown in Fig.11. 

 
Fig.11 Flowchart describing the residue method  

 

IV.  RESULTS AND DISSCUSSIONS 

 The results will be presented through studying the system 

described in Fig.1 in three scenarios as shown in Fig.12. In the 

Time Domain Analysis (TDS), the considered small-signal 

disturbance is a +10 % step increase in the mechanical power 

input (Pm) to the equivalent generator of the study system 

shown in Fig. 1, 2, and 4. The changes in the mechanical 

power will be started at t = 2 sec.  

 

Fig.12 Study Scenarios  

  

A) Impact of the TCSC on the small- signal stability 

 Tables I and II show the system dominant eigenvalues and 

their participation factors of scenario 1 and scenario 2 

respectively. 
 

TABLE I 
 SCENARIO 1 - DOMINANT EIGENVALUES AND PARTICIPATION FACTORS 

Most 

Associated 

States 

Participation 

factors  
(%) 

f 
(Hz) 

Eigenvalues 

ω1 δ1 

δ1, ω1 5.0 5.0 9.34 2.12.1  j7.6085 5.42710-  

TABLE II  
SCENARIO 2 - DOMINANT EIGENVALUES AND PARTICIPATION FACTORS 

Most 

associated 

states 

Participation 

Factors 
 

(%) 

f 
(Hz) 

Eigenvalues 

X1_TCSC ω δ 

ω, δ 0 0.5 0.5 8.79 2.1020 j8.08545.42710- 

X1_TCSC 1 0 0 100% 0 -100 
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It is clear from Tables I and II that both scenarios are stable; 

however, the eigenvalues of the system are changed as an 

effect of adding the TCSC to the system. The TCSC adds a 

non-oscillatory eigenvalue as depicted from Table II. The 

frequencies of the oscillatory modes of the system with TCSC 

are increased by 6.216% in comparison with the system 

without the TCSC while their damping ratios are reduced by 

5.888%; (the percentage changes are calculated according to: 

% change = 100*(new value – old value)/old value). 

Therefore, the inclusion of the TCSC degrades the system 

stability. The damping ratio is less than 10%. Therefore, 

inclusion of POD is recommended to elevate the damping 

ratio to a value higher than or equal to 10% [9, 17].  POD 

designs according to the frequency response and residue 

methods are presented in the next sections; the objective is to 

increase the damping ratio to an acceptable value i.e.  ≥ 10%. 

Various input signals to the POD will be considered. In 

addition, the observability and controllability of them will be 

determined using equations (9) and (10). 

 

B) Observability and controllability of various input signals 

 The observability and controllability of candidate 

feedback signals to the POD will be determined. Based on Fig. 

1, these signals are the current across the transformer, the 

sending end active power, and the sending end reactive power. 

The modal controllability ( ́)  and modal observability (  ́ ) 

matrices associated with the considered feedback signals are 

shown in Table III. 
Table III 

Modal observability and controllability of various feedback signals 

Feedback signal 
Modal observability C’ 

matrix 
Modal controllability 

B’ matrix 

The current across 

the transformer 
 2843.03707.13707.1   























100

93.008.0

93.008.0

j

j

 The sending end 
active power 

 2785.0223.1223.1   

The sending end 

reactive power 
 0209.01438.01438.0  

 

 Considering the critical electromechanical modes shown 

in Table II (highlighted by gray shading), it is depicted from 

Table III that all the considered signals are observable and 

controllable. Highest observability is associated with the 

current across the transformer feedback signal followed by the 

sending end active power then the sending end reactive power. 

Due to space limits, POD designs will be presented 

considering only the current across the transformer as a 

feedback signal; however, the presented design algorithms are 

general and can be applied to design PODs considering any 

acceptable feedback signal. 

 

C) POD designs 

 Based on the flowcharts presented in Fig. 8 and 11, POD 

designs using the frequency response and residue methods are 

presented in this section. Designs with each of the considered 

feedback signals will be determined. Section IV-A and IV-B 

completed the initial stages of the design shown in Fig. 8 and 

11 i.e. building the input and output matrices, analysis of the 

eigenvalues, modal controllability, and modal observability. 

The washout filter time constant (Tw) is chosen to be 7. This 

value is arbitrary selected between 1 and 20 [17].  

 

1) The Frequency Response Method 

 With the transformer current as an input signal to the 

POD, the Nyquist plot (for positive frequencies) of the 

uncompensated OLTF (pre-design) and the compensated 

OLTF(post-design) is shown in Fig. 13. 
 

 
Fig. 13 Nyquist plots of SMIB system with and without POD  

  

 It is depicted from Fig. 13 and Table II that the OLTF for 

the system is stable, but presents poorly damped poles. For a 

good POD design, the resulting polar plot should be 

approximately symmetric with respect to the real axis of the 

complex plane [5, 17]. Based on the Nyquist plot shown in 

Fig. 13, the value of the angle  required to relocate the 

critical frequency is 100.23
o
. Therefore, using equations (19) 

and (20), the parameters of the lead-lag compensators are T1 = 

0.3408  sec. and T2 = 0.0449 sec. The gain Kw is determined 

based on the root locus of the system including the POD. The 

Matlab control system toolbox [12] is used to construct the 

root locus as shown in Fig. 14. The gain Kw is determined by 

dragging the critical mode to an acceptable damping ratio 

which is chosen to be higher than 10%. As shown in Fig. 14, 

the value of the damping of the critical mode in the 

compensated system is set to 15.63% and the corresponding 

gain is 0.0641. The transfer function of the POD is then takes 

the form 

 

 
Fig. 14 Root locus of the compensated system and selection of the gain Kw  

 

   ( )        [
  

    
] [

         

         
]
 

            (  ) 

 

      With the POD connected to the system shown in Fig. 5 as 

shown in Fig. 15, the design will be evaluated by both the 

eigenvalue analysis and the TDS of the compensated system. 

The results of the eigenvalue analysis of the compensated 
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system is shown in Table IV which indicates that the 

minimum damping of the system is improved to 15.63% as set 

by the POD design. Tables I and II show respectively that the 

damping of the system without TCSC is 9.34% and 8.79% in 

the uncompensated system with TCSC. This ensures the 

success of the POD design for improving the damping of the 

system. 

 

 
Fig.15 Modelling of the SMIB in the 3rd scenario 

 
TABLE IV 

FREQUENCY DOMAIN METHOD BASED EIGENVALUE ANALYSIS OF THE COMPENSATED 

SYSTEM  

Most associated states 
 

(%) 

f 
(Hz) 

Eigenvalues 

X1_TCSC, V3_POD 19.53% 25.50           j61.930621.1111- 

V2_POD 100% 0 -13.0749+j0 

ω, δ 15.63% 2.1.21         j7.82662.1107- 

V1_POD  100% 0 -0.14262+j0 

 

 The TDS is performed considering a 10% step increase in 

the mechanical power input to the equivalent synchronous 

generator. This disturbance started at t = 2 sec. The simulation 

is performed using the Matlab control system toolbox. The 

responses of the systems of the three scenarios shown in Fig. 

12 are compared as shown in Fig. 16. 
 

 
 

(a) 

 
(b) 

Fig. 16 TDS for 10% increase in the mechanical power: (a) Rotor angles; (b) 
Rotor angular speeds.  

It is depicted from Fig. 16 that the POD improves the dynamic 

performance of the system through increasing the system 

damping, decreasing the overshoots, and decreasing the 

settling time. 

2) The Residue Method 

     The design is based on the flowchart of Fig. 11. With the 

transformer current as an input signal to the POD, the 

residues for all eigenvalues of the system without POD should 

be obtained to determine the residue of the most critical mode. 

This is shown in Table IV. Afterward, the POD parameters 

can be determined as described in section III-B. The transfer 

function of the POD is then takes the form: 
 

TABLE V 

RESIDUES OF THE EIGENVALUES 

Residues Eigenvalues 

-0.1043-j1.281 +j8.08545.42710- 

-0.1043+j1.281 -j8.08545.42710- 

-28.4305 -100 

 

   ( )        [
  

    
] [

         

         
]
 

                (  ) 

      
     Table V shows the eigenvalue analysis of the system after 

connecting the POD to the system which indicates the 

improvement in the system damping in comparison to the 

systems of scenarios 1 and 2. The TD responses as various 

scenarios subjected to the considered disturbance are shown in 

Fig. 16. The results validate the POD design using the residue 

method which results in approximately the same TD response 

of the system.   
Table V 

Residue method: Eigenvalue analysis of the compensated system  

Most associated 

states 
 

(%) 

f 

(Hz) 
Eigenvalues 

X1_TCSC, V3_POD 58.57% 1.1.27          j42.580815.441.- 

ω, δ 15.33% 2.1117         j7.99952.1104- 

V3_POD  100% 0 -12.4271+j0 

V1_POD  100% 0 -0.14255+j0 

 

3) Further Analysis 

 In this section a summary of some other related results 

will be presented to show the effect of some critical issues in 

damping of oscillations in power systems. These issues are the 

impact of POD input signal and the value of the time constant 

of the washout filter (Tw) on damping of power system 

oscillations. The impact of POD input signal is shown in Fig. 

17 which indicates that better dynamic performance can be 

achieved with the transformer reactive power as a feedback 

signal while the other feedback signals (i.e. the transformer 

current and the transformer active power ) have the same 

impact on the dynamic performance of the system. Therefore,  

careful choice of the input signal is important for damping 

maximization through POD design. High damping can be 

achieved with the transformer reactive power as an input 

signal because of the less control loop stability restrictions on 

the POD parameters in comparison with other signals. 
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(a) 

 
(b) 

Fig. 17 TDS for 10% increase in the mechanical power with various feedback 

signals: (a) Rotor angles; (b) Rotor angular speeds. 
 

 The results shown in Table IV are obtained with Tw = 7. 

Although the literature recommended to select a random value 

for Tw between 1 to 20 sec, detailed analysis shows that the 

acceptable range of Tw is dependent on the system parameters 

and operating conditions. This is demonstrated in Table VI for 

the same design conditions shown in Table IV. Three values 

of Tw are shown. These values are 1 sec, 7 sec, and 14 sec. 
 

TABLE IV 

IMPACT OF TW ON THE DYNAMIC PERFORMANCE 

Tw = 1 Tw = 7 Tw = 14 

 
(%) 

f 
(Hz) 

 
(%) 

f 
(Hz) 

 
(%) 

f 
(Hz) 

27.54% 0.02.4 19.53% 25.50 9.15% 642..01 

100% 0 100% 0 100% 0 

16% 2.1001 15.63% 2.1.21 16.21% 2.10.. 

100% 0 100% 0 100% 0 
 

Table IV shows that for all the considered values of Tw, the 

damping ratio of the critical electromechanical modes (shown 

in Table II) can be successfully increased to values higher than 

15% which is practically acceptable damping level. The 

interesting part here is that, as shown in Table IV, that 

increasing Tw results in decreasing the damping ratios and 

increasing the frequencies of some of the electromechanical 

modes that was originally not critical (i.e. their damping ratio 

was higher than 10%). It is also shown that high value of Tw 

such as 14 as shown in Table IV could result in creating new 

critical modes in the compensated system. Therefore, careful 

selection of Tw should be considered in the initial stages of the 

design. It is also important to know that a suitable value of Tw 

for a specific system may be not suitable for another system.  

In addition, the impact of Tw on the dynamic performance is 

also sensitive to the operating conditions of a power system. 
 

V. CONCLUSIONS 

 This paper presents a detailed analysis of the impact of 

TCSC on the dynamic performance of power systems. The 

results show that TCSC without POD reduces the dynamic 

stability. Therefore, POD is presented in this paper for 

improving the damping and stability of power systems. Two 

popular methods used for control design are successfully 

implemented for determining the parameters of POD. These 

methods are the frequency domain method and the residue 

method. The modal analysis as well as the time domain 

simulation verifies the results and show the dynamical benefits 

gained from the POD. In addition, critical design issues such 

as selection of the POD input signal and value of the time 

constant of the washout filter are also summarized. Since 

control of power system stability is an essential issue to keep 

power systems operating in a secure state. Therefore, further 

researches on POD design improvement are recommended for 

future work.   
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